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Abstract— In this paper, we propose a multiscale deep
feature learning method for high-resolution satellite image scene
classification. Specifically, we first warp the original satellite
image into multiple different scales. The images in each scale are
employed to train a deep convolutional neural network (DCNN).
However, simultaneously training multiple DCNNs is time-
consuming. To address this issue, we explore DCNN with spatial
pyramid pooling (SPP-net). Since different SPP-nets have the
same number of parameters, which share the identical initial
values, and only fine-tuning the parameters in fully connected
layers ensures the effectiveness of each network, thereby greatly
accelerating the training process. Then, the multiscale satellite
images are fed into their corresponding SPP-nets, respectively,
to extract multiscale deep features. Finally, a multiple kernel
learning method is developed to automatically learn the optimal
combination of such features. Experiments on two difficult
data sets show that the proposed method achieves favorable
performance compared with other state-of-the-art methods.

Index Terms— Deep convolutional neural networks (DCNNs),
feature fusion, multiple kernel learning (MKL), multiscale deep
features, satellite image classification, spatial pyramid pooling.

I. INTRODUCTION

REMOTE sensing image classification has been an active
research topic in the past few decades, and most of

the existing works primarily focus on pixelwise classification,
which assigns label information to each pixel in a multi-
spectral or hyperspectral image [1]–[5]. Although significant
progress has been made in this area, pixels are not enough
for the entire image understanding, because they have a few
semantic meanings [6]. With the development of imaging
techniques, a large amount of high spatial resolution satellite
images become available [7]–[9], which opens new possibili-
ties in remote sensing image analysis and classification.

However, satellite images with high spatial resolution pose
many challenging issues in image classification. First, the
enhanced resolution brings more details; thus, simple low-
level features (e.g., intensity and textures) widely used in the

Manuscript received April 5, 2016; revised January 18, 2017, May 1, 2017,
and June 14, 2017; accepted August 13, 2017. Date of publication
September 13, 2017; date of current version December 27, 2017. This
work was supported in part by the Natural Science Foundation of China
under Grant 61532009 and Grant 41501377 and in part by the Natural
Science Foundation of Jiangsu Province, China under Grant 15KJA520001.
(Corresponding authors: Qingshan Liu; Renlong Hang.)

The authors are with the Jiangsu Key Laboratory of Big Data Analysis Tech-
nology, School of Information and Control, Nanjing University of Information
Science and Technology, Nanjing 210044, China (e-mail: qsliu@nuist.edu.cn;
renlong_hang@163.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2017.2743243

Fig. 1. Few examples of high-resolution satellite images. (a) Runway.
(b) Freeway. (c) and (d) Airplane. (e) Commercial.

case of low-resolution images are insufficient in capturing
efficiently discriminative information [8]. For instance,
Fig. 1(a) and (b) has similar color and texture features, but
they belong to different categories (i.e., runway and freeway),
which can be discriminated by adding the car information.
Second, objects in the same type of scene might have
different scales and orientations [10]. As shown in Fig. 1(c)
and (d), the airplane in Fig. 1(d) is much smaller than that
in Fig. 1(c), and their orientations are also different. Besides,
high-resolution satellite images often consist of many different
semantic classes, which makes further classification more
difficult [11]. Taking Fig. 1(e) for example, the commercial
scene comprises roads, buildings, trees, parking lots, and
so on. Thus, developing effective feature representations is
critical for solving these issues.

There are two popular feature representation models that
are successfully used in satellite image classification. One is
the bag of visual words (BOVWs) model [12]–[14], which
generally includes three steps: 1) extracting man-made visual
features, such as scale invariant feature transform (SIFT) [15]
and histogram of oriented gradient [16] descriptors;
2) clustering features to form visual words (clustering
centers) by using k-means or other clustering methods; and
3) mapping visual features to the closest word and generating
a mid-level feature representation by word histograms.
This model and its variants have been investigated in
satellite image classification [11], [17]. However, it is an
orderless collection of local descriptors, regardless of spatial
information. To overcome this drawback, a spatial pyramid
matching (SPM) method was proposed in [18], in which the
image is first partitioned into increasingly fine subregions and
then histograms of local features are extracted inside each
subregion. Since satellite imagery generally does not have
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Fig. 2. Flowchart of the proposed method.

an absolute reference frame, the relative spatial arrangement
of the image elements becomes very important. Accordingly,
Yang and Newsam [9] proposed the spatial pyramid co-
occurrence, which characterizes both the photometric and
geometric information of an image. Unlike dividing the
image into uniform cells in [9] and [18], Jiang et al. [19]
proposed a randomized spatial partition to describe various
image layouts.

Feature representation based on sparse coding (SC) is
the other popular method for scene classification [20], [21].
Its basic idea is that the original signal can be sparsely
reconstructed with respect to some fixed bases (dictionary)
and the selected bases are enforced into as few categories as
possible. In [7], a two-layer SC was proposed for satellite
image classification. Sheng et al. [10] proposed to use SC
to generate three mid-level representations based on SIFT,
local ternary pattern histogram Fourier, and color histogram
features, respectively. Recently, an unsupervised dictionary
learning method has been proposed in [11], which achieves
favorable performance in satellite image classification.

Although these methods have achieved promising results
in satellite image classification, there still exist some short-
comings. For the BOVW models, a key step is how to extract
low-level visual features. This process is generally handcrafted
and heavily depends on experience and domain knowledge of
designers. For the SC models, they can be considered as a
single-layer feature learning architecture, which automatically
selects a few vectors from a large pool of possible bases
to encode an input signal [22], [23]. As discussed in [24],
the shallow architectures have shown effectiveness in solving
many simple or well-constrained problems, but their lim-
ited modeling and representational power are insufficient in
complex scene cases like the high-resolution satellite images.
Besides, SC focuses on searching for sparse representation
of the original images, which may lose helpful discriminative
information for the subsequent supervised classification.

Recently, deep learning, especially DCNN, has been widely
used in natural image processing [23]. The core idea is
to hierarchically learn high-level semantic features without
human interactions. In 2012, Krizhevsky et al. [25] designed
a DCNN architecture based on two graphics processing units
with multiple convolutional and fully connected layers. This
architecture achieved excellent classification results on the
ImageNet 2012 Large Scale Visual Recognition Challenge.
Afterward, a large amount of works about DCNN sprang
up [26]–[31]. He et al. [31] proposed the DCNN with spatial
pyramid pooling (SPP-net) to solve the size constraint problem

of input images, which exists in most DCNN architectures.
Benefiting from spatial pyramid pooling, SPP-net can be
trained faster and achieves higher performance than DCNN.
In the field of remote sensing image processing, DCNN has
also attracted much attention [32]–[34].

In this paper, we employ SPP-net to automatically extract
multiscale deep features of high-resolution satellite images.
As shown in Fig. 1(c) and (d), the scales of objects in
satellite images often vary. Traditional DCNNs are not able to
sufficiently explore this information, because they can extract
only the deep features of images from a predefined scale
(e.g., 224 × 224). We, therefore, attempt to construct multiple
DCNNs with different input scales to address this issue.
However, it is well known that training a deep model costs
much time, not to mention training multiple models simul-
taneously. Benefiting from spatial pyramid pooling, SPP-net
can generate a fixed-length representation regardless of image
size/scale. In other words, SPP-nets with different input image
scales can exactly share the same weight parameters [35].
Besides, for each SPP-net, fine-tuning the parameters in fully
connected layers ensures an efficient network, thus greatly
accelerating the training process. Hence, we choose SPP-net as
our basic deep model. Because of the large numbers of para-
meters and scarcity in training samples, the SPP-net inevitably
poses the overfitting problem. We, therefore, take advantage
of the training results using the ImageNet data set. Afterward,
we use the trained SPP-nets to extract multiscale deep features.
In the classification stage, we attempt to optimize the fusion
weights of multiscale deep features and classifier parameters
via the multiple kernel learning (MKL) method, making the
learned fusion weights optimal for classification.

II. METHODOLOGY

The flowchart of the proposed method is shown in Fig. 2.
The whole procedure consists of three steps: 1) warping the
original satellite images into multiple scales; 2) extracting
multiscale deep features using multiple SPP-nets; and 3) fusing
multiscale deep features via a multikernel learning method.
In Sections II-A–II-C, we will introduce the last two steps
in detail.

A. SPP-Net Architecture

SPP-net was first proposed in [31] to address the size
issue of input images. Here, we use it to automatically learn
multiscale deep features of high-resolution satellite images.
Specifically, we combine the prevalent seven-layer architecture
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Fig. 3. Architecture of the SPP-net.

in [25] with spatial pyramid pooling (SPP). The designed
architecture is shown in Fig. 3. The network contains five
successive convolutional layers and two fully connected layers.
They are concisely referred to as convi , i = {1, . . . , 5} and
fc j , j = {6, 7}. For instance, conv1 denotes that the first layer
is a convolutional layer; fc6 indicates that the sixth layer is
a fully connected layer. The first two convolutional layers
are followed by max-pooling operators. They operate in a
sliding-window manner and output feature maps representing
the spatial layout of the responses. Before the first fully
connected layer, SPP is exploited to pool the features from
the last convolutional layer. Similar to SPM [18], we partition
the feature maps into increasingly fine subregions, and pool
the responses inside each subregion (throughout this paper,
we use max pooling). Assume that the size of each feature
map after the last convolutional layer is a × a pixels and
each feature map is partitioned into n × n subregions. Then,
SPP can be considered as convolution operators in a sliding-
widow manner with window size win = �a/n� and stride
str = �a/n�, where �·� and �·� denote ceiling and floor
operators, respectively. Fig. 3 demonstrates a three-level SPP
configuration by setting n × n as 1 × 1, 2 × 2, and 4 × 4,
respectively. The final output of SPP is to concatenate these
three-level pooling results into a vector. This simple pooling
operator largely reduces the number of parameters needed to
be trained between the last convolution layer and the first
fully connected layer. Thus, it is faster to train SPP-net than
the traditional DCNNs. Besides, SPP extracts multiresolution
information from the last convolutional layer, which improves
the final classification results. Despite the varying sizes of
input images, which lead to the varying sizes of feature maps
at each convolutional layer, the lengths of input vectors to
the first fully connected layer remain the same. This property
ensures that the number of parameters remains unchanged.
Therefore, the multiple SPP-nets are capable of sharing the
same initial parameters.

B. Training Method

The above network contains more than 30 millions of
parameters. Training such a network needs a large amount
of samples. A canonical data set widely used in the DCNN
architectures is ImageNet, consisting of millions of images.
However, only hundreds of samples are available for high-
resolution satellite image classification, which is far less
than ImageNet. The most intuitional method to enlarge the

Fig. 4. Detailed training process of our method.

number of training samples is the cropping or flipping
operator [25], [31]. Nevertheless, it is still far enough to train
an efficient network. Recently, Oquab et al. [36] proposed to
transfer image representations learned with DCNN on large
data sets to other visual recognition tasks with limited training
data. Motivated by this paper, we propose to first pretrain
the network in [25] using auxiliary ImageNet 2012 data
set (Source task), and then fine-tune our SPP-nets by employ-
ing the training samples from satellite images (Target task).

The training procedure of the source task is carried out
via the open source Caffe DCNN library [37]. Specifically,
a multinomial logistic regression function is optimized using
the stochastic gradient descent algorithm based on the back
propagation method [38]. The batch size and momentum are
set to 256 and 0.9, respectively. The training is regularized by
a weight decay of 0.0005 and dropout operators for the two
fully connected layers (dropout ratio is set to 0.5). The initial
learning rate is set to be 0.01. This value is fixed and used to
update iteratively the weights. At each iteration, we calculate
the classification accuracy of the validation set. When the
accuracy stops increasing, we divide the learning rate by 10,
and this new value is used to update the weights. The whole
process is repeated until convergence. In our experiments,
the learning rate reduces three times prior to termination
(after 370k iterations) and the weights in each layer are ini-
tialized from a zero-mean Gaussian distribution with standard
deviation σ = 0.01. After the pretraining of source task,
the weight parameters learned in the five convolutional layers
are then transferred to the target task and kept fixed. For the
target task, we only need to fine-tune the last three layers
(i.e., two fully connected layers and the output layer). The
whole process is demonstrated in Fig. 4. It is worth noting that
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the source task is pretrained only once, and the source task
along with the target task shares the same initial parameters,
which means that the learned parameters from the source
task are directly transferred to the multiple SPP-nets. For
each SPP-net, the parameters of fully connected layers are
fine-tuned by the training samples of satellite images, while
other parameters remain the same. After training the networks,
the multiscale images are fed into their corresponding net-
works to extract multiscale features.

C. Feature Fusion

With the extracted multiscale deep features, an intuitive way
of integrating these features is to concatenate them into a
vector. This method is based on the assumption that all features
have the same contribution to the subsequent classification,
which obviously is not true in most cases. Besides, the formed
high-dimensional feature space not only increases the compu-
tational burden but also induces the overfitting problem. MKL
has been proved to be an effective method to combine different
features for remote sensing image classification [39]–[42].
In this paper, the extracted multiscale deep representations can
be considered as different features of an image. Therefore,
we employ MKL to integrate these multiscale features.

Assume that the extracted multiscale features for the
i th sample are denoted as X(i) = {x(i)

1 , . . . , x(i)
m , . . . , x(i)

M },
where x(i)

m is a row vector representing the features extracted
from the mth SPP-net and M is the total number of
SPP-nets. Our goal is to automatically learn the fusion weights
{d1, . . . , dm , . . . , dM }, making the generated feature X̂(i) =
{d1x(i)

1 , . . . , dmx(i)
m , . . . , dM x(i)

M } optimal for the subsequent
support vector machine (SVM) classifier. Given N training
samples {(X̂(i), y(i)), i = 1, 2, . . . , N} where y(i) ∈ {−1,+1},
SVM generally maps each sample X̂(i) to a higher dimensional
Hilbert space H using a nonlinear mapping function φ, and
therein constructs a linear hyperplane 〈ω, φ(X̂)〉+b = 0 where
the operator 〈·, ·〉 represents the inner product. The hyperplane
is a maximum margin hyperplane, for which the distance from
the hyperplane to the closest sample is maximum. It is well
known that minimizing the norm of the parameters 1/2‖ω‖2

under the constraint y(i)(〈φ(X̂),ω〉 + b) ≥ 1 maximizes
the margin. Such a minimization of the weights provides a
naturally regularized solution, which favors smooth models of
optimal complexity and avoids overfitting the data. The dual
problem of SVM can be written as

max W (α(i), α( j )) =
N∑

i=1

α(i) − 1

2

N∑

i=1

N∑

j=1

α(i)α( j )y(i)y( j )

× 〈φ(X̂(i)), φ(X̂( j ))〉

s.t. 0 ≤ α(i) ≤ C, i = 1, 2, . . . , N,

N∑

i=1

α(i) y(i) = 0 (1)

where α(i) and α( j ) are Lagrange multipliers, and C is a reg-
ularization parameter, which determines the tradeoff between
the margin and the error on training data.

It is worth noting that directly computing φ is nontrivial,
but we can calculate the dot product for any two samples

Fig. 5. Some image examples in 21-class land-use data set. (a) Airplane. (b)
Baseball diamond. (c) Buildings. (d) Dense residential. (e) Forest. (f) Golf
course. (g) Harbor. (h) Intersection.

in the Hilbert space H via a kernel trick, which can be
expressed as 〈φ(X̂(i)), φ(X̂(j))〉 = K (X̂(i), X̂(j)), where K (·, ·)
denotes a kernel function. Besides, because of X̂(i) =
{d1x(i)

1 , . . . , dmx(i)
m , . . . , dM x(i)

M }, we have K (X̂(i), X̂(j)) =∑M
m=1 d2

m Km(x(i)
m , x(j)

m ) [43]. Replacing it in (1), we can get
the following objective function:

max W (α(i), α( j ), dm) =
N∑

i=1

α(i) − 1

2

N∑

i=1

N∑

j=1

α(i)α( j )y(i)

× y( j )
M∑

m=1

d2
m Km

(
x(i)

m , x(j)
m

)

s.t. 0 ≤ α(i) ≤ C, i = 1, 2, . . . , N,

N∑

i=1

α(i) y(i) = 0. (2)

Equation (2) can be considered as a typical MKL prob-
lem. To simultaneously optimize the fusion weight dm , and
Lagrange multipliers αi and α j , we adopt the Simple MKL
algorithm, which was first proposed in [44]. Because the
objective function in (2) is convex and differentiable, d2

m is
optimized by using a gradient ascend method. The gradient
equals to the derivative of W

∂W

∂d2
m

= −1

2

N∑

i=1

N∑

j=1

α(i)α( j )y(i)y( j )Km
(
x(i)

m , x(j)
m

)
. (3)

Then, d2
m is updated as follows:

d2
m = d2

m + γ
∂W

∂d2
m

(4)

where γ is the step length. Note that the gradient is updated
only when the objective value decreases during the iterative
process. This updating procedure is repeated until the stopping
criterion is satisfied.

III. EXPERIMENTS

To evaluate the effectiveness of the proposed method,
we compare it with several state-of-the-art approaches on two
widely used data sets: 21-Class Land-Use [9] data set and
19-Class Satellite Scene [7], [8] data set.
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Fig. 6. OAs and standard deviations of SPP-nets at three different scales under different number of training samples on the 21-class land-use data set.
(a) 128 × 128 scale. (b) 192 × 192 scale. (c) 256 × 256 scale.

TABLE I

OAS (%) AND STANDARD DEVIATIONS OF SPP-NETS WITH DIFFERENT LAYER FEATURES UNDER
DIFFERENT NUMBER OF TRAINING SAMPLES ON 21-CLASS LAND-USE DATA SET

A. Twenty-One-Class Land-Use Data Set
1) Data Description: This data set was manually extracted

from aerial orthoimagery downloaded from the United States
Geological Survey National Map. It consists of 21 different
land-use and land-cover classes, including agricultural, air-
plane, baseball diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection,
medium density residential, mobile home park, overpass, park-
ing lot, river, runway, sparse residential, storage tanks, and
tennis courts. Each class contains 100 RGB images with a
pixel resolution of 1 ft (i.e., 0.3 m) and an image size of
256 × 256 pixels. Fig. 5 shows some image examples from
the 21 classes.

2) Experimental Setup: In each experiment, besides the
original scale, the images are warped into two different scales,
including 128 × 128 and 192 × 192 pixels. For (2), we select
linear kernels. For training and testing, the images in each
class are randomly split into two sets. In the training stage,
we use the training set to fine-tune the SPP-nets and train
the linear SVMs, where the SVMs are implemented using the
LIBSVM package, and one-against-all strategy is adopted to
address the multiclass issue. The performance of the classifiers
is then evaluated on the testing set. In order to reduce the
effect of random selection, we repeat each algorithm on ten
different training/testing splits of the data set and report means
and standard deviations of the obtained accuracies.

3) Each Layer Performance: To assess which layer is the
best for our task, similar to [45], we analyze and compare
the results of the last four feature layers. For simplicity,

we name them conv5, conv5+spp, fc6, and fc7. Fig. 6 shows
the mean overall accuracies (OAs) and standard deviations
using features from different layers at three scales versus
different number of training samples. From this figure, we can
conclude that the OAs are improved as the number of training
samples increases. Besides, fc6 is better than conv5 and
fc7 in most cases. However, with the spatial pyramid pool-
ing, conv5+spp improves the performance significantly as
compared with conv5, and achieves better results than fc6.
Table I demonstrates the detailed quantitative results using 5,
50, and 80 training samples from each class, respectively. The
bold fonts indicate the best results with respect to different
number of training samples under one scale. In common with
Fig. 6, the features from conv5+spp layers achieve the highest
accuracies in most of the cases. Thus, we use the features
from conv5+spp for the subsequent multiscale feature fusion
via MKL.

4) Efficiency of MKL: To examine the performance of
our proposed MKL fusion method, we compare it with
the single-scale method and the traditional fusion method,
i.e., stacking the multiscale deep features into one vector (SV).
The classification results using different number of training
samples with features from conv5+spp layers are demon-
strated in Fig. 7, where conv5+spp-128, conv5+spp-192, and
conv5+spp-256 represent that the scales of input images are
128 × 128, 192 × 192, and 256 × 256 pixels, respectively.
From this figure, we can observe that the SV method achieves
higher classification accuracies than the single-scale features,
which can be explained that multiscale deep features represent
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Fig. 7. OAs and standard deviations of MKL versus SV and the single scales
using conv5+spp features under different number of training samples on the
21-class land-use data set. Standard deviations are shown as error bars in the
vertical direction.

TABLE II

DETAILED CLASSIFICATION RESULTS COMPARISON BETWEEN

SINGLE-SCALE FEATURES AND TWO DIFFERENT

MULTISCALE FEATURE FUSION METHODS
ON THE 21-CLASS LAND-USE DATA SET

TABLE III

OVERALL CLASSIFICATION ACCURACY (%) COMPARISON

ON THE 21-CLASS LAND-USE DATA SET

different abstracts of the original images and simultaneously
using these complementary information thereby improves the
classification results. Another obvious observation is that the
MKL method significantly boosts the classification results as
compared with SV. The reason can be attributed to the fact
that MKL automatically learns the optimal combination among
multiscale deep features, while SV simply assumes that the
features in all scales play the same role. The quantitative
results in Table II support the conclusions in Fig. 7, which
further confirms the efficiency of our proposed fusion method.

5) Comparison With the State of the Arts: To demon-
strate the superiority of the proposed method, we com-
pare with several state-of-the-art approaches, including
DCNN [25], gradient boosting random convolutional net-
work (GBRCN) [33], semisupervised ensemble projection
(SSEP) [46], Partlets-based method [6], SC+Pooling [11],
BOVW [9], extended spatial pyramid co-occurrence kernel
(SPCK++) [9], spatial pyramid match kernel (SPMK) [18],

Fig. 8. Each class accuracy comparison between two methods on
the 21-class land-use data set. (a) SSEP in [46] and SPP-net+MKL using
five training samples. (b) Partlets-based method in [6] and SPP-net+MKL
using 50 training samples.

MKL [47], and unsupervised feature learning (UFL) [48].
The classification results with different number of train-
ing samples are shown in Table III, where “−” denotes
that there are no experiments. From this table, we can
observe that SPP-net with the best single-scale feature
achieves higher accuracies than most of comparison methods.
This implies that the deep learning method learns more
powerful features. Besides, the combination of multiscale
deep features further improves the performance. Specifically,
SPP-net+MKL boosts the performance dramatically by 15%,
8%, and 2% in comparison with the existing best results
when the number of training samples is 5, 50, and 80,
respectively. To the best of our knowledge, these results
are the best on this data set, which adequately show the
superiority of our proposed method. It is worth noting that
SPP-net+MKL obtains higher OA (i.e., 96.38%) than GBRCN
whose OA is 94.53% when we use 80 samples from each
class as the training set. This indicates that sufficiently
capturing the multiscale information in satellite images can
improve the classification performance. In addition, we also
compare SPP-net+MKL with two recently proposed state-of-
the-art approaches by evaluating the accuracy in each class,
which is shown in Fig. 8. From Fig. 8(a), we observe that
SSEP gets a little better performance than SPP-net+MKL in
six classes. This is because the SSEP method takes advantage
of the sampling technique to indirectly increase the num-
ber of training samples, while SPP-net+MKL only uses the
given training samples. Nevertheless, SPP-net+MKL achieves
higher accuracies in the rest of 15 classes. Similarly, Fig. 8(b)
demonstrates that SPP-net+MKL obtains higher performance
in 19 classes compared with the Partlets-based method in [6].
For further analysis of the classification result achieved by
SPP-net+MKL, we use the confusion matrix shown in Fig. 9
to illustrate one of the results in ten experiments when the
number of training samples is five. The i th row and j th column
element in the confusion matrix denotes the rate of test
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TABLE IV

OAs (%) AND STANDARD DEVIATIONS OF SPP-NETS WITH DIFFERENT LAYER FEATURES UNDER DIFFERENT
NUMBER OF TRAINING SAMPLES ON THE 19-CLASS SATELLITE SCENE DATA SET

Fig. 9. Confusion matrix of SPP-net+MKL with five training samples in
each class on the 21-class satellite scene data set. The rows and columns of the
matrix denote actual and predicted classes, respectively. The class labels are as
follows. 1: Agricultural. 2: Airplane. 3: Baseball diamond. 4: Beach. 5: Build-
ings. 6: Chaparral. 7: Dense residential. 8: Forest. 9: Freeway. 10: Golf course.
11: Harbor. 12: Intersection. 13: Medium residential. 14: Mobile home park.
15: Overpass. 16: Parking lot. 17: River. 18: Runway. 19: Sparse residential.
20: Storage tanks. 21: Tennis court.

samples from the i th class classified to the j th class. It can
be observed that the most difficult classes to discriminate
contain dense residential, Runway, medium residential, and
storage tanks, whose accuracies are all lower than 60%. For
instance, as shown in Fig. 10, some images in the dense
residential class have similar structures to those in the medium
residential class and the mobile home park class. Therefore,
these images in dense residential are easily misclassified as
medium residential and mobile home park. However, when
the number of training samples increases to 50, the accuracies
of these classes improve significantly. This indicates that the
number of training samples is a key factor for SPP-net+MKL.

B. Nineteen-Class Satellite Scene Data Set
1) Data Description and Experimental Setup: The second

data set is composed of 19 classes of scenes, including airport,
beach, bridge, commercial area, desert, farmland, football
field, forest, industrial area, meadow, mountain, park, parking,
pond, port, railway station, residential area, river, and viaduct.
Each class has 50 images, with a size of 600 × 600 pixels.
Such images are extracted from very large satellite images
on Google Earth. Similar to the 21-class land-use data set,
the original images are warped to three different scales:
128 × 128, 192 × 192, and 256 × 256. We construct two
experiments. The first one is randomly choosing five images
from each class as the training set, and the rest of the images
are used as the testing set, following [10], [46], and [47].
The second experiment randomly chooses 25 images as the
training set and the remaining as the testing set, following [10].
All the experiments are repeated ten times with different train-

Fig. 10. Some image examples of (first row) dense residential,
(second row) medium residential, and (third row) mobile home park.

TABLE V

DETAILED CLASSIFICATION RESULTS COMPARISON BETWEEN SINGLE

SCALE FEATURES AND TWO DIFFERENT MULTISCALE FEATURE

FUSION METHODS ON THE 19-CLASS SATELLITE
SCENE DATA SET

ing/testing splits to obtain stable results. The final performance
is reported as the mean and standard deviation of the results
from ten runs.

2) Each Layer Performance: Similar to the first data set,
we evaluate the effect of different feature layers on the final
performance. Fig. 11 shows the classification results at three
different scales using conv5, conv5+spp, fc6, and fc7 features.
From this figure, we can observe that conv5+spp achieves the
highest OAs as well as in the first data set compared with the
other three features, which is also demonstrated in Table IV.
Besides, we observe that the OAs on this data set are higher
than that on the first data set under the same number of training
samples. This is because this data set is easier to discriminate
and the number of testing sets is smaller than that in the
first data set. Fig. 12 and Table V compare the performance
between single-scale conv5+spp features and two multiscale
fusion methods. Obviously, the performance of SV is only a
little better than that of 192×192 and 256×256 scales. How-
ever, MKL displays significant improvements in comparison
with SV, which confirms the effectiveness of the MKL fusion
method.
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Fig. 11. OAs and standard deviations of SPP-nets at three different scales under different number of training samples on the 19-class satellite scene data
set. (a) 128 × 128 scale. (b) 192 × 192 scale. (c) 256 × 256 scale. Standard deviations are shown as error bars in the vertical direction.

Fig. 12. OAs and standard deviations of MKL versus SV and the single
scales using conv5+spp features under different number of training samples
on the 19-class satellite scene data set. Standard deviations are shown as error
bars in the vertical direction.

TABLE VI

OVERALL CLASSIFICATION ACCURACY (%) COMPARISON

ON THE 19-CLASS SATELLITE SCENE DATA SET

Fig. 13. Each class accuracy comparison between SPP-net+MKL and SSEP
in [46] using five training samples.

3) Comparison With the State of the Arts: In order to com-
prehensively analyze the superiority of the proposed method,
we compare it with three state-of-the-art approaches ever
tested on this data set. They are SSEP [46], sparse codes
of multiple features (SCMF) [10], and MKL [47]. The com-
parison results are illustrated in Table VI, from which we
can observe that the proposed SPP-net+MKL significantly

improves the accuracy from 78.32 to 85.22 and 90.05 to
95.07 when the numbers of training samples are 5 and 25,
respectively. Besides, we compare each class accuracy with the
latest approach SSEP in [46]. SPP-net+MKL achieves higher
accuracies in 14 classes, as shown in Fig. 13.

IV. CONCLUSION

This paper proposed to automatically extract multiscale
deep features from the satellite images by using SPP-net. This
net comprises five convolutional layers and two fully con-
nected layers, where the last convolutional layer is followed
by the spatial pyramid pooling operator. It is well known
that the performance of deep models heavily depends on the
large number of training samples, while only hundreds of
samples are available in most of the satellite image classi-
fication cases. Therefore, we focused on solving the problem
of training multiple effective SPP-nets simultaneously. To this
end, we pretrained the DCNN model by using the auxiliary
ImageNet data set, which is different from satellite images,
and then transferred the parameters in the five convolutional
layers to the SPP-nets. Finally, the fully connected layers of
each SPP-net were fine-tuned by their corresponding training
samples. It is of great interest to see that this training approach
leads to very promising classification results that outperform
most of the existing results on the same data sets. Furthermore,
a MKL method was adopted to fuse the multiscale deep
features. The experiments on two classical satellite data sets
have demonstrated that the proposed method dramatically
improves the classification results compared with several state
of the arts.
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